Abstract:<p style='text-indent:20px;'>In this paper we investigate the existence and uniqueness of Riemannian cubics under boundary conditions on position and velocity. We restrict the study to cubics close to geodesics at the boundaries. In other words, we consider the boundary data in a neighborhood of geodesic boundary data. We define a map that generalizes the Riemannian exponential, the biexponential. This map is used to establish the correspondence between initial and boundary data. We also emphasize the re… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.