A chromosome is composed of structurally and functionally distinct domains. Telomeres, which are located at the ends of linear chromosomes, play crucial roles in genome stability. Although substantial knowledge of telomeres has been accumulated, the regulation and function of subtelomeres, which are the domains adjacent to telomeres, remain largely unknown. In this review, I describe recent discoveries about the multiple roles of a shugoshin family protein, Sgo2, which is localized at centromeres in mitosis and contributes to precise chromosome segregation, in defining chromatin structure and functions of the subtelomeres in fission yeast. Sgo2 becomes enriched at the subtelomeres, particularly during G 2 phase, and is essential for the formation of a highly condensed subtelomeric chromatin body called the knob. Furthermore, Sgo2 maintains the expression levels of subtelomeric genes and the timing of DNA replication at subtelomeric late origins.