Essential tremor is the most prevalent movement disorder and is often refractory to medical treatment. Deep brain stimulation offers a therapeutic approach that can efficiently control tremor symptoms. Several deep brain stimulation targets (ventral intermediate nucleus, zona incerta, posterior subthalamic area) have been discussed for tremor treatment. Effective deep brain stimulation therapy for tremor critically involves optimal targeting to modulate the tremor network. This could potentially become more robust and precise by using state-of-the-art brain connectivity measurements. In the current study, we utilized two normative brain connectomes (structural and functional) to show the pattern of effective deep brain stimulation electrode connectivity in 36 essential tremor patients. Our structural and functional connectivity models were significantly predictive of post-operative tremor improvement in out-of-sample data (p < 0.001 for both structural and functional leave-one-out cross-validation). Additionally, we segregated the somatotopic brain network based on head and hand tremor scores. These resulted in segregations that mapped onto the well-known somatotopic maps of both motor cortex and cerebellum. Crucially, this shows that slightly distinct networks need to be modulated to ameliorate head vs. hand tremor and that those networks could be identified based on somatotopic zones in motor cortex and cerebellum.Finally, we propose a multi-modal connectomic deep brain stimulation sweet spot that may serve as a reference to enhance clinical care, in the future. This spot resided in the posterior subthalamic area, encroaching on the inferior borders of ventral intermediate nucleus and sensory thalamus.Our results underscore the importance of integrating brain connectivity in optimizing deep brain stimulation targeting for essential tremor.