Chalcopyrite solar cells achieve efficiencies above 23%. The latest improvements are due to post‐deposition treatments (PDT) with heavy alkalis. This study provides a comprehensive description of the effect of PDT on the chemical and electronic structure of surface and bulk of Cu(In,Ga)Se2. Chemical changes at the surface appear similar, independent of absorber or alkali. However, the effect on the surface electronic structure differs with absorber or type of treatment, although the improvement of the solar cell efficiency is the same. Thus, changes at the surface cannot be the only effect of the PDT treatment. The main effect of PDT with heavy alkalis concerns bulk recombination. The reduction in bulk recombination goes along with a reduced density of electronic tail states. Improvements in open‐circuit voltage appear together with reduced band bending at grain boundaries. Heavy alkalis accumulate at grain boundaries and are not detected in the grains. This behavior is understood by the energetics of the formation of single‐phase Cu‐alkali compounds. Thus, the efficiency improvement with heavy alkali PDT can be attributed to reduced band bending at grain boundaries, which reduces tail states and nonradiative recombination and is caused by accumulation of heavy alkalis at grain boundaries.
This review summarizes the current status of Cu(In,Ga)(S,Se) 2 (CIGS) thin film solar cell technology with a focus on recent advancements and emerging concepts intended for higher efficiency and novel applications. The recent developments and trends of research in laboratories and industrial achievements communicated within the last years are reviewed, and the major developments linked to alkali post deposition treatment and composition grading in CIGS, surface passivation, buffer, and transparent contact layers are emphasized. Encouraging results have been achieved for CIGS-based tandem solar cells and for improvement in low light device performance. Challenges of technology transfer of lab's record high efficiency cells to average industrial production are obvious from the reported efficiency values. One section is dedicated to development and opportunities offered by flexible and lightweight CIGS modules.
Flexible, lightweight Cu(In,Ga)Se2 (CIGS) solar cells grown on polymer substrates are a promising technology with fast growing market prospects. However, power conversion efficiencies of solar cells grown at low temperatures (≈450 °C) remain below the efficiencies of cells grown at high temperature on glass substrates. This contribution discusses the impact on cell efficiency of process improvements of low‐temperature CIGS deposition on flexible polyimide and glass substrates. Different strategies for incorporation of alkali elements into CIGS are evaluated based on a large number of depositions. Postdeposition treatment with heavy alkali (here RbF) enables a thickness reduction of the CdS buffer layer and increases the open‐circuit voltage. Na supply during 3rd stage CIGS deposition positively impacts the cell performance. Coevaporation of heavy alkali (e.g., RbF) during capping layer deposition mitigates the adverse shunting associated with high Cu contents, yielding highest efficiencies with near‐stoichiometric absorber compositions. Furthermore, optimization of the deposition sequence results in absorbers with a 1 µm wide notch region with nearly constant bandgap minimum. The improved processes result in a record cell efficiency of 20.8% for CIGS on flexible substrate.
Objective: In this study, we seek to analyze the determinants of the intracranial electroencephalography seizure onset pattern (SOP) and the impact of the SOP in predicting postsurgical seizure outcome. Methods: To this end, we analyzed 820 seizures from 252 consecutive patients explored by stereo-electroencephalography (total of 2148 electrodes), including various forms of focal refractory epilepsies. We used a reproducible method combining visual and time-frequency analyses. Results: We described eight SOPs: low-voltage fast activity (LVFA), preictal spiking followed by LVFA, burst of polyspikes followed by LVFA, slow wave/ DC shift followed by LVFA, sharp theta/alpha waves, beta sharp waves, rhythmic spikes/spike-waves, and delta-brush. LVFA occurred in 79% of patients. The seizure onset pattern was significantly associated with (1) underlying etiology (burst of polyspikes followed by LVFA with the presence of a focal cortical dysplasia, LVFA with malformation of cortical development, postvascular and undetermined epilepsies), (2) spatial organization of the epileptogenic zone (EZ; burst of polyspikes followed by LVFA with focal organization, slow wave/DC shift followed by LVFA with network organization), and (3) postsurgical seizure outcome (better outcome when LVFA present). Significance: This study demonstrates that the main determinants of the SOP are the underlying etiology and the spatial organization of the EZ. Concerning the postsurgical seizure outcome, the main determinant factor is the spatial organization of the EZ, but the SOP plays also a role, conferring better prognosis when LVFA is present. K E Y W O R D S epilepsy, epilepsy surgery, epileptogenic zone, focal drug-resistant epilepsy, SEEG, seizure onset | 85 SUPPORTING INFORMATION Additional supporting information may be found online in the Supporting Information section at the end of the article. How to cite this article: Lagarde S, Buzori S, Trebuchon A, et al. The repertoire of seizure onset patterns in human focal epilepsies: Determinants and prognostic values. Epilepsia. 2019;60:85-95.
Drug-refractory focal epilepsies are network diseases associated with functional connectivity alterations both during ictal and interictal periods. A large majority of studies on the interictal/resting state have focused on functional MRI-based functional connectivity. Few studies have used electrophysiology, despite its high temporal capacities. In particular, stereotactic-EEG is highly suitable to study functional connectivity because it permits direct intracranial electrophysiological recordings with relative large-scale sampling. Most previous studies in stereotactic-EEG have been directed towards temporal lobe epilepsy, which does not represent the whole spectrum of drug-refractory epilepsies. The present study aims at filling this gap, investigating interictal functional connectivity alterations behind cortical epileptic organization and its association with post-surgical prognosis. To this purpose, we studied a large cohort of 59 patients with malformation of cortical development explored by stereotactic-EEG with a wide spatial sampling (76 distinct brain areas were recorded, median of 13.2 per patient). We computed functional connectivity using non-linear correlation. We focused on three zones defined by stereotactic-EEG ictal activity: the epileptogenic zone, the propagation zone and the non-involved zone. First, we compared within-zone and between-zones functional connectivity. Second, we analysed the directionality of functional connectivity between these zones. Third, we measured the associations between functional connectivity measures and clinical variables, especially post-surgical prognosis. Our study confirms that functional connectivity differs according to the zone under investigation. We found: (i) a gradual decrease of the within-zone functional connectivity with higher values for epileptogenic zone and propagation zone, and lower for non-involved zones; (ii) preferential coupling between structures of the epileptogenic zone; (iii) preferential coupling between epileptogenic zone and propagation zone; and (iv) poorer post-surgical outcome in patients with higher functional connectivity of non-involved zone (within- non-involved zone, between non-involved zone and propagation zone functional connectivity). Our work suggests that, even during the interictal state, functional connectivity is reinforced within epileptic cortices (epileptogenic zone and propagation zone) with a gradual organization. Moreover, larger functional connectivity alterations, suggesting more diffuse disease, are associated with poorer post-surgical prognosis. This is consistent with computational studies suggesting that connectivity is crucial in order to model the spatiotemporal dynamics of seizures.10.1093/brain/awy214_video1awy214media15833456182001.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.