2,2,3-Trisubstituted aziridines are known to undergo ring opening at the more substituted carbon under mildly basic conditions. However, the reason for the formation of the more sterically encumbered product has never been examined. Several trisubstituted aziridines, with different substitution patterns at the C-2 and C-3 carbons, were synthesized to change the electronics of the aziridine ring system. These changes had no effect on the regioselectivity of the ring-opening reaction. Using the B3LYP/6-31G* DFT basis set it was determined that the transition state for opening at the more substituted carbon proceeds at a lower energy than the transition state at the less substituted carbon.