Background: This study aimed to investigate the effects of RKI-1447, a selective inhibitor of Rho-associated ROCK kinases, in a mouse model of nonalcoholic fatty liver disease (NAFLD) induced by a high-fat diet, and in oleic acid-treated HepG2 human hepatocellular carcinoma cells in vitro. Material/Methods: Four study groups of mice included: the control group; the high-fat diet (HFD) group; the HFD+RKI-1447 (2 mg/kg) group; and the HFD+RKI-1447 (8 mg/kg) group. Mice were fed a high-fat diet for 12 weeks. Mice in the HFD+RKI-1447 groups were fed a high-fat diet for 12 weeks and treated with RKI-1447 twice weekly for three weeks. The HepG2 human hepatocellular carcinoma cells were treated with or without RKI-1447 for 2 h and treated with oleic acid for 24 h. Results: In the mouse model of NAFLD, RKI-1447 reduced insulin resistance and the levels of alanine aminotransferase (ALT), aspartate transaminase (AST), total cholesterol, triglyceride, interleukin-6 (IL-6), tumor necrosis factor-a (TNF-a), malondialdehyde (MDA), and superoxide dismutase (SOD). RKI-1447 reduced the histological changes in the mouse model of NAFLD in mice fed a high-fat diet and significantly inhibited the generations of triglyceride, IL-6, and TNF-a. RKI-1447 reduced the levels of oxidative stress in HepG2 cells treated with oleic acid and significantly down-regulated the expression of RhoA, ROCK1, ROCK2, toll-like receptor 4 (TLR4), p-TBK1, and p-IRF3. RKI-1447 treatment also inhibited RhoA expression. Conclusions: In a mouse model of NAFLD, RKI-1447 inhibited ROCK and modulated insulin resistance, oxidative stress, and inflammation through the ROCK/TLR4/TBK1/IRF3 pathway.