A microarray accession number was inadvertently omitted from this paper. Microarray data for this paper can be found at NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE16062.
Here we show that conventional reprogramming towards pluripotency through overexpression of Oct4, Sox2, Klf4 and c-Myc can be shortcut and directed towards cardiogenesis in a fast and efficient manner. With as little as 4 days of transgenic expression of these factors, mouse embryonic fibroblasts (MEFs) can be directly reprogrammed to spontaneously contracting patches of differentiated cardiomyocytes over a period of 11-12 days. Several lines of evidence suggest that a pluripotent intermediate is not involved. Our method represents a unique strategy that allows a transient, plastic developmental state established early in reprogramming to effectively function as a cellular transdifferentiation platform, the use of which could extend beyond cardiogenesis. Our study has potentially wide-ranging implications for induced pluripotent stem cell (iPSC)-factor-based reprogramming and broadens the existing paradigm.
Mountainous evidence suggests that inflammation, cardiomyocyte apoptosis and pyroptosis are involved in the development of sepsis and sepsis-induced cardiomyopathy (SIC). Stimulator of interferon genes (STING) is an indispensable molecule that could regulate inflammation and immune response in multiple diseases. However, the role of STING in cardiovascular disease, especially SIC remains unclear. This study was designed to investigate the potential molecular mechanisms of STING in lipopolysaccharide (LPS)-induced cardiac injury using STING global knockout mice. In wild type mice and cardiomyocytes, LPS stimulation triggered the perinuclear translocation of STING, which further bound to Type-I interferons (IFN) regulatory factor 3 (IRF3) and phosphorylated IRF3. Phosphorylated (P-) IRF3 subsequently translocated into nucleus and increased the expression of NOD-like receptor protein 3 (NLRP3). Knockout of STING in mice significantly improved survival rate and cardiac function, apart from suppressing myocardial and serum inflammatory cytokines, apoptosis, as well as cardiomyocyte pyroptosis.
In vitro
experiments revealed that NLRP3 overexpression by adenovirus could offset protective effects of STING knockdown in LPS-induced cardiomyocytes. Additionally, LPS stimulation also promoted the production of intracellular reactive oxygen (ROS), which further induced the NLRP3 translocation to the cytoplasm from the nucleus. Dissociative TXNIP could directly interact with cytoplasmic NLRP3 and form inflammasome, eventually triggering cardiomyocyte injury. Collectively, our findings disclose that STING deficiency could alleviate LPS-induced SIC in mice. Hence, targeting STING in cardiomyocytes may be a promising therapeutic strategy for preventing SIC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.