A microarray accession number was inadvertently omitted from this paper. Microarray data for this paper can be found at NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE16062.
Mouse epiblast stem cells (EpiSCs) are cultured with FGF2 and Activin A, like human embryonic stem cells (hESCs), but the action of the associated pathways in EpiSCs has not been well characterized. Here, we show that activation of the Activin pathway promotes self-renewal of EpiSCs via direct activation of Nanog, whereas inhibition of this pathway induces neuroectodermal differentiation, like in hESCs. In contrast, the different roles of FGF signaling appear to be only partially conserved in the mouse. Our data suggest that FGF2 fails to cooperate with SMAD2/3 signaling in actively promoting EpiSC self-renewal through Nanog, in contrast to its role in hESCs. Rather, FGF appears to stabilize the epiblast state by dual inhibition of differentiation to neuroectoderm and of media-induced reversion to a mouse embryonic stem cell-like state. Our data extend the current model of cell fate decisions concerning EpiSCs by clarifying the distinct roles played by FGF signaling.
Induced pluripotent stem cell technology has attracted enormous interests for potential application in regenerative medicine. Here, we reported that a specific glycogen synthase kinase 3 (GSK-3) inhibitor, CHIR99021, can induce the reprogramming of mouse embryonic fibroblasts (MEFs) transduced by only Oct4 and Klf4 two factors. When combined with Parnate (also named tranylcypromine), an inhibitor of lysine-specific demethylase 1, CHIR99021 can result in the reprogramming of human primary keratinocyte transducted with Oct4 and Klf4 two factors. To our knowledge, this is the first time to generate human iPS cells from somatic cells without exogenous Sox2 expression. Our studies suggest that the GSK-3 inhibitor might have a general application to replace transcription factors in both mouse and human reprogramming.
Embryonic stem cells (ESCs) comprise at least two populations of cells with divergent states of pluripotency. Here, we show that epiblast stem cells (EpiSCs) also comprise two distinct cell populations that can be distinguished by the expression of a specific Oct4-GFP marker. These two subpopulations, Oct4-GFP positive and negative EpiSCs, are capable of converting into each other in vitro. Oct4-GFP positive and negative EpiSCs are distinct from ESCs with respect to global gene expression pattern, epigenetic profile, and Oct4 enhancer utilization. Oct4-GFP negative cells share features with cells of the late mouse epiblast and cannot form chimeras. However, Oct4-GFP positive EpiSCs, which only represent a minor EpiSC fraction, resemble cells of the early epiblast and can readily contribute to chimeras. Our findings suggest that the rare ability of EpiSCs to contribute to chimeras is due to the presence of the minor EpiSC fraction representing the early epiblast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.