Recent studies have shown that defined sets of transcription factors can directly reprogram differentiated somatic cells to a different differentiated cell type without passing through a pluripotent state, but the restricted proliferative and lineage potential of the resulting cells limits the scope of their potential applications. Here we show that a combination of transcription factors (Brn4/Pou3f4, Sox2, Klf4, c-Myc, plus E47/Tcf3) induces mouse fibroblasts to directly acquire a neural stem cell identity-which we term as induced neural stem cells (iNSCs). Direct reprogramming of fibroblasts into iNSCs is a gradual process in which the donor transcriptional program is silenced over time. iNSCs exhibit cell morphology, gene expression, epigenetic features, differentiation potential, and self-renewing capacity, as well as in vitro and in vivo functionality similar to those of wild-type NSCs. We conclude that differentiated cells can be reprogrammed directly into specific somatic stem cell types by defined sets of specific transcription factors.
Mouse epiblast stem cells (EpiSCs) are cultured with FGF2 and Activin A, like human embryonic stem cells (hESCs), but the action of the associated pathways in EpiSCs has not been well characterized. Here, we show that activation of the Activin pathway promotes self-renewal of EpiSCs via direct activation of Nanog, whereas inhibition of this pathway induces neuroectodermal differentiation, like in hESCs. In contrast, the different roles of FGF signaling appear to be only partially conserved in the mouse. Our data suggest that FGF2 fails to cooperate with SMAD2/3 signaling in actively promoting EpiSC self-renewal through Nanog, in contrast to its role in hESCs. Rather, FGF appears to stabilize the epiblast state by dual inhibition of differentiation to neuroectoderm and of media-induced reversion to a mouse embryonic stem cell-like state. Our data extend the current model of cell fate decisions concerning EpiSCs by clarifying the distinct roles played by FGF signaling.
Mouse and human stem cells with features similar to those of embryonic stem cells have been derived from testicular cells. Although pluripotent stem cells have been obtained from defined germline stem cells (GSCs) of mouse neonatal testis, only multipotent stem cells have been obtained so far from defined cells of mouse adult testis. In this study we describe a robust and reproducible protocol for obtaining germline-derived pluripotent stem (gPS) cells from adult unipotent GSCs. Pluripotency of gPS cells was confirmed by in vitro and in vivo differentiation, including germ cell contribution and transmission. As determined by clonal analyses, gPS cells indeed originate from unipotent GSCs. We propose that the conversion process requires a GSC culture microenvironment that depends on the initial number of plated GSCs and the length of culture time.
Embryonic stem cells (ESCs) comprise at least two populations of cells with divergent states of pluripotency. Here, we show that epiblast stem cells (EpiSCs) also comprise two distinct cell populations that can be distinguished by the expression of a specific Oct4-GFP marker. These two subpopulations, Oct4-GFP positive and negative EpiSCs, are capable of converting into each other in vitro. Oct4-GFP positive and negative EpiSCs are distinct from ESCs with respect to global gene expression pattern, epigenetic profile, and Oct4 enhancer utilization. Oct4-GFP negative cells share features with cells of the late mouse epiblast and cannot form chimeras. However, Oct4-GFP positive EpiSCs, which only represent a minor EpiSC fraction, resemble cells of the early epiblast and can readily contribute to chimeras. Our findings suggest that the rare ability of EpiSCs to contribute to chimeras is due to the presence of the minor EpiSC fraction representing the early epiblast.
The ability to reprogram somatic cells into induced pluripotent stem cells (iPSCs) using defined factors provides new tools for biomedical research. However, some iPSC clones display tumorigenic and immunogenic potential, thus raising concerns about their utility and safety in the clinical setting. Furthermore, variability in iPSC differentiation potential has also been described. Here we discuss whether these therapeutic obstacles are specific to transcription-factor-mediated reprogramming or inherent to every cellular reprogramming method. Finally, we address whether a better understanding of the mechanism underlying the reprogramming process might improve the fidelity of reprogramming and, therefore, the iPSC quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.