The goal of the study was to investigate how variations in ripple width influence the ripple density resolution. The influence of the ripple width was investigated with two experimental paradigms: (i) discrimination between a rippled test signal and a rippled reference signal with opposite ripple phases and (ii) discrimination between a rippled test signal and a flat reference signal. The ripple density resolution depended on the ripple width: the narrower the width, the higher the resolution. For distinguishing between two rippled signals, the resolution varied from 15.1 ripples/oct at a ripple width of 9% of the ripple frequency spacing to 8.1 ripples/oct at 64%. For distinguishing between a rippled test signal and a non-rippled reference signal, the resolution varied from 85 ripples/oct at a ripple width of 9% to 9.3 ripples/oct at a ripple width of 64%. For distinguishing between two rippled signals, the result can be explained by the increased ripple depth in the excitation pattern due to the widening of the inter-ripple gaps. For distinguishing between a rippled test signal and a non-rippled reference signal, the result can be explained by the increased ratio between the autocorrelated and uncorrelated components of the input signal.