Natural products (NPs) are a major source of compounds for medical, agricultural, and biotechnological industries. Many of these compounds are of microbial origin, and, in particular, from Actinobacteria or filamentous fungi. To successfully identify novel compounds that correlate to a bioactivity of interest, or discover new enzymes with desired functions, systematic multiomics approaches have been developed over the years. Bioinformatics tools harness the rapidly expanding wealth of genome sequence information, revealing previously unsuspected biosynthetic diversity. Varying growth conditions or application of elicitors are applied to activate cryptic biosynthetic gene clusters, and metabolomics provide detailed insights into the NPs they specify. Combining these technologies with proteomics‐based approaches to profile the biosynthetic enzymes provides scientists with insights into the full biosynthetic potential of microorganisms. The proteomics approaches include enrichment strategies such as employing activity‐based probes designed by chemical biology, as well as unbiased (quantitative) proteomics methods. In this review, the opportunities and challenges in microbial NP research are discussed, and, in particular, the application of proteomics to link biosynthetic enzymes to the molecules they produce, and vice versa.