This paper presents a machine learning system for supporting the first task of the biological literature manual curation process, called triage. We compare the performance of various classification models, by experimenting with dataset sampling factors and a set of features, as well as three different machine learning algorithms (Naive Bayes, Support Vector Machine and Logistic Model Trees). The results show that the most fitting model to handle the imbalanced datasets of the triage classification task is obtained by using domain relevant features, an under-sampling technique, and the Logistic Model Trees algorithm.
Fungal secondary metabolites (SMs) are an important source of numerous bioactive compounds largely applied in the pharmaceutical industry, as in the production of antibiotics and anticancer medications. The discovery of novel fungal SMs can potentially benefit human health. Identifying biosynthetic gene clusters (BGCs) involved in the biosynthesis of SMs can be a costly and complex task, especially due to the genomic diversity of fungal BGCs. Previous studies on fungal BGC discovery present limited scope and can restrict the discovery of new BGCs. In this work, we introduce TOUCAN, a supervised learning framework for fungal BGC discovery. Unlike previous methods, TOUCAN is capable of predicting BGCs on amino acid sequences, facilitating its use on newly sequenced and not yet curated data. It relies on three main pillars: rigorous selection of datasets by BGC experts; combination of functional, evolutionary and compositional features coupled with outperforming classifiers; and robust post-processing methods. TOUCAN best-performing model yields 0.982 F-measure on BGC regions in the Aspergillus niger genome. Overall results show that TOUCAN outperforms previous approaches. TOUCAN focuses on fungal BGCs but can be easily adapted to expand its scope to process other species or include new features.
Enzymes active on components of lignocellulosic biomass are used for industrial applications ranging from food processing to biofuels production. These include a diverse array of glycoside hydrolases, carbohydrate esterases, polysaccharide lyases and oxidoreductases. Fungi are prolific producers of these enzymes, spurring fungal genome sequencing efforts to identify and catalogue the genes that encode them. To facilitate the functional annotation of these genes, biochemical data on over 800 fungal lignocellulose-degrading enzymes have been collected from the literature and organized into the searchable database, mycoCLAP (http://mycoclap.fungalgenomics.ca). First implemented in 2011, and updated as described here, mycoCLAP is capable of ranking search results according to closest biochemically characterized homologues: this improves the quality of the annotation, and significantly decreases the time required to annotate novel sequences. The database is freely available to the scientific community, as are the open source applications based on natural language processing developed to support the manual curation of mycoCLAP.Database URL: http://mycoclap.fungalgenomics.ca
Fungal Biosynthetic Gene Clusters (BGCs) of secondary metabolites are clusters of genes capable of producing natural products, compounds that play an important role in the production of a wide variety of bioactive compounds, including antibiotics and pharmaceuticals. Identifying BGCs can lead to the discovery of novel natural products to benefit human health. Previous work has been focused on developing automatic tools to support BGC discovery in plants, fungi, and bacteria. Datadriven methods, as well as probabilistic and supervised learning methods have been explored in identifying BGCs. Most methods applied to identify fungal BGCs were data-driven and presented limited scope. Supervised learning methods have been shown to perform well at identifying BGCs in bacteria, and could be well suited to perform the same task in fungi. But labeled data instances are needed to perform supervised learning.Openly accessible BGC databases contain only a very small portion of previously curated fungal BGCs. Making new fungal BGC datasets available could motivate the development of supervised learning methods for fungal BGCs and potentially improve prediction performance compared to data-driven methods. In this work we propose new publicly available fungal BGC datasets to support the BGC discovery task using supervised learning. These datasets are prepared to perform binary classification and predict candidate BGC regions in fungal genomes. In addition we analyse the performance of a well supported supervised learning tool developed to predict BGCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.