Hospitalisation risks for chronic obstructive pulmonary disease (COPD) have been attributed to ambient air pollution worldwide. However, a rise in COPD hospitalisations may indicate a considerable increase in fatality rate in public health. The current study focuses on the association between consecutive ambient air pollution (CAAP) and COPD hospitalisation to offer predictable early guidance towards estimates of COPD hospital admissions in the event of consecutive exposure to air pollution. Big data analytics were collected from 3-year time series recordings (from 2015 to 2017) of both air data and COPD hospitalisation data in the Chengdu region in China. Based on the combined effects of CAAP and unit increase in air pollutant concentrations, a quasi-Poisson regression model was established, which revealed the association between CAAP and estimated COPD admissions. The results show the dynamics and outbreaks in the variations in COPD admissions in response to CAAP. Cross-validation and mean squared error (MSE) are applied to validate the goodness of fit. In both short-term and long-term air pollution exposures,
Z
test outcomes show that the COPD hospitalisation risk is greater for men than for women; similarly, the occurrence of COPD hospital admissions in the group of elderly people (> 65 years old) is significantly larger than that in lower age groups. The time lag between the air quality and COPD hospitalisation is also investigated, and a peak of COPD hospitalisation risk is found to lag 2 days for air quality index (AQI) and PM
10
, and 1 day for PM
2.5
. The big data-based predictive paradigm would be a measure for the early detection of a public health event in post-COVID-19. The study findings can also provide guidance for COPD admissions in the event of consecutive exposure to air pollution in the Chengdu region.