The emergence of several diseases affecting amphibian populations worldwide has prompted investigations into determinants of the occurrence and abundance of parasites in frogs. To understand the spatial scales and identify specific environmental factors that determine risks of parasitism in frogs, helminth communities in metamorphic frogs of the northern leopard frog (Rana pipiens) were examined in relation to wetland and landscape factors at local (1 km) and regional (10 km) spatial extents in an agricultural region of Minnesota (USA) using regression analyses, ordination, and variance partitioning techniques. Greater amounts of forested and woody wetland habitats, shorter distances between woody wetlands, and smaller-sized open water patches in surrounding landscapes were the most consistently positive correlates with the abundances, richness, and diversity of helminths found in the frogs. Wetland and local landscape variables were suggested as most important for larval trematode abundances, whereas local and regional landscape variables appeared most important for adult helminths. As previously reported, the sum concentration of atrazine and its metabolite desethylatrazine, was the strongest predictor of larval trematode communities. In this report, we highlight the additional influences of landscape factors. In particular, our data suggest that anthropogenic activities that have resulted in the loss of the availability and connectivity of suitable habitats in the surrounding landscapes of wetlands are associated with declines in helminth richness and abundance, but that alteration of wetland water quality through eutrophication or pesticide contamination may facilitate the transmission of certain parasite taxa when they are present at wetlands. Although additional research is needed to quantify the negative effects of parasitism on frog populations, efforts to reduce inputs of agrochemicals into wetlands to limit larval trematode infections may be warranted, given the current high rates of amphibian declines and extinction events.