ObjectiveThe present study aimed to examine the association between maternal passive smoking during pregnancy and the risk of spontaneous PTD and to explore the potential interaction of the single or joint gene polymorphism of CYP1A1 and GSTs with maternal passive smoking on the risk of spontaneous PTD.MethodWe investigated whether the association between maternal passive smoking and PTD can be modified by 2 metabolic genes, i.e. cytochrome P4501A1 (CYP1A1) and glutathione S-transferases (GSTs), in a case-control study with 198 spontaneous preterm and 524 term deliveries in Shenzhen and Foshan, China. We used logistic regression to test gene-passive smoking interaction, adjusting for maternal socio-demographics and prepregnancy body mass index.ResultsOverall, maternal passive smoking during pregnancy was associated with higher risk of PTD (adjusted odds ratio = 2.20 [95% confidence interval: 1.56–3.12]). This association was modified by CYP1A1 and GSTs together, but not by any single genotype. For cross-categories of CYP1A1 Msp I and GSTs, maternal passive smoking was associated with higher risk of PTD among those women with CYP1A1 “TC/CC”+ GSTs “null”, but not among women with other genotypes; and this interaction was significant (OR = 2.66 [95% CI: 1.19–5.97]; P-value: 0.017). For cross-categories of CYP1A1 BsrD I and GSTs, maternal passive smoking was associated with higher risk of PTD only among those women with CYP1A1“AG/GG”+ GSTs “null”, but not among women with other genotypes; and this interaction was significant (OR = 3.00 [95% CI: 1.17–7.74]; P-value: 0.023).ConclusionsOur findings suggest that the combined genotypes of CYP1A1 and GSTs can help to identify vulnerable pregnant women who are subject to high risk of spontaneous PTD due to passive smoking.