Summary Background Since a national lockdown was introduced across the UK in March, 2020, in response to the COVID-19 pandemic, cancer screening has been suspended, routine diagnostic work deferred, and only urgent symptomatic cases prioritised for diagnostic intervention. In this study, we estimated the impact of delays in diagnosis on cancer survival outcomes in four major tumour types. Methods In this national population-based modelling study, we used linked English National Health Service (NHS) cancer registration and hospital administrative datasets for patients aged 15–84 years, diagnosed with breast, colorectal, and oesophageal cancer between Jan 1, 2010, and Dec 31, 2010, with follow-up data until Dec 31, 2014, and diagnosed with lung cancer between Jan 1, 2012, and Dec 31, 2012, with follow-up data until Dec 31, 2015. We use a routes-to-diagnosis framework to estimate the impact of diagnostic delays over a 12-month period from the commencement of physical distancing measures, on March 16, 2020, up to 1, 3, and 5 years after diagnosis. To model the subsequent impact of diagnostic delays on survival, we reallocated patients who were on screening and routine referral pathways to urgent and emergency pathways that are associated with more advanced stage of disease at diagnosis. We considered three reallocation scenarios representing the best to worst case scenarios and reflect actual changes in the diagnostic pathway being seen in the NHS, as of March 16, 2020, and estimated the impact on net survival at 1, 3, and 5 years after diagnosis to calculate the additional deaths that can be attributed to cancer, and the total years of life lost (YLLs) compared with pre-pandemic data. Findings We collected data for 32 583 patients with breast cancer, 24 975 with colorectal cancer, 6744 with oesophageal cancer, and 29 305 with lung cancer. Across the three different scenarios, compared with pre-pandemic figures, we estimate a 7·9–9·6% increase in the number of deaths due to breast cancer up to year 5 after diagnosis, corresponding to between 281 (95% CI 266–295) and 344 (329–358) additional deaths. For colorectal cancer, we estimate 1445 (1392–1591) to 1563 (1534–1592) additional deaths, a 15·3–16·6% increase; for lung cancer, 1235 (1220–1254) to 1372 (1343–1401) additional deaths, a 4·8–5·3% increase; and for oesophageal cancer, 330 (324–335) to 342 (336–348) additional deaths, 5·8–6·0% increase up to 5 years after diagnosis. For these four tumour types, these data correspond with 3291–3621 additional deaths across the scenarios within 5 years. The total additional YLLs across these cancers is estimated to be 59 204–63 229 years. Interpretation Substantial increases in the number of avoidable cancer deaths in England are to be expected as a result of diagnostic delays due to the COVID-19 pandemic in the UK. Urgent policy interventions are necessary, particularly the need to manage the backlog within ro...
SummaryBackgroundA key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016.MethodsDrawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0–100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0–100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita.FindingsIn 2016, HAQ Index performance spanned from a high of 97·1 (95% UI 95·8–98·1) in Iceland, followed by 96·6 (94·9–97·9) in Norway and 96·1 (94·5–97·3) in the Netherlands, to values as low as 18·6 (13·1–24·4) in the Central African Republic, 19·0 (14·3–23·7) in Somalia, and 23·4 (20·2–26·8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China,...
PROLOGUE: Approaches to measuring health system performance can be as numerous as the systems themselves are complex. Health care disparities research illuminates one such prism through which to view systemic effectiveness. In 2006 the Agency for Healthcare Research and Quality (AHRQ) issued the most recent National Healthcare Disparities Report-the first national initiative measuring differences in access to and use of health services among races and ethnicities. The 2006 report asserts that "disparities related to race, ethnicity, and socioeconomic status still pervade the American health care system." By way of illustration, it points out that many minorities are more likely than others to be diagnosed with late-stage breast and colorectal cancers, are disproportionately affected by diabetes and heart disease, and are more likely to die from HIV.Remedial policy solutions to address disparities come with their own challenges. As we learned from Kenneth Keppel and colleagues (Sep/Oct 2007), for example, reducing the overall disease burden and improving overall health care quality do not necessarily go hand in hand with improving the health of subpopulations. Further complicating matters, sometimes these goals even conflict. Accordingly, reducing disparities requires an independent commitment. And when the interests of the few conflict with those of the majority, policymakers inevitably face difficult resource allocation decisions.The paper that follows by Ellen Nolte (ellen.nolte@lshtm.ac.uk) and Martin McKee, both of the London School of Hygiene and Tropical Medicine, represents another metric through which health system performance might reasonably be gauged. This work measures the extent to which deaths that would not have occurred but for the presence of effective health care have been reduced among Organization for Economic Cooperation and Development (OECD) countries over time. Cause for concern can be seen in the authors' finding that despite being the most prolific health care spender, the United States is falling farther behind its peer nations in overall health system performance, as measured by what the authors term "amenable mortality." 5 8 J a n u a r y / F e b r u a r y 2 0 0 8 H e a l t h S t a t u s
SummaryBackgroundNational levels of personal health-care access and quality can be approximated by measuring mortality rates from causes that should not be fatal in the presence of effective medical care (ie, amenable mortality). Previous analyses of mortality amenable to health care only focused on high-income countries and faced several methodological challenges. In the present analysis, we use the highly standardised cause of death and risk factor estimates generated through the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) to improve and expand the quantification of personal health-care access and quality for 195 countries and territories from 1990 to 2015.MethodsWe mapped the most widely used list of causes amenable to personal health care developed by Nolte and McKee to 32 GBD causes. We accounted for variations in cause of death certification and misclassifications through the extensive data standardisation processes and redistribution algorithms developed for GBD. To isolate the effects of personal health-care access and quality, we risk-standardised cause-specific mortality rates for each geography-year by removing the joint effects of local environmental and behavioural risks, and adding back the global levels of risk exposure as estimated for GBD 2015. We employed principal component analysis to create a single, interpretable summary measure–the Healthcare Quality and Access (HAQ) Index–on a scale of 0 to 100. The HAQ Index showed strong convergence validity as compared with other health-system indicators, including health expenditure per capita (r=0·88), an index of 11 universal health coverage interventions (r=0·83), and human resources for health per 1000 (r=0·77). We used free disposal hull analysis with bootstrapping to produce a frontier based on the relationship between the HAQ Index and the Socio-demographic Index (SDI), a measure of overall development consisting of income per capita, average years of education, and total fertility rates. This frontier allowed us to better quantify the maximum levels of personal health-care access and quality achieved across the development spectrum, and pinpoint geographies where gaps between observed and potential levels have narrowed or widened over time.FindingsBetween 1990 and 2015, nearly all countries and territories saw their HAQ Index values improve; nonetheless, the difference between the highest and lowest observed HAQ Index was larger in 2015 than in 1990, ranging from 28·6 to 94·6. Of 195 geographies, 167 had statistically significant increases in HAQ Index levels since 1990, with South Korea, Turkey, Peru, China, and the Maldives recording among the largest gains by 2015. Performance on the HAQ Index and individual causes showed distinct patterns by region and level of development, yet substantial heterogeneities emerged for several causes, including cancers in highest-SDI countries; chronic kidney disease, diabetes, diarrhoeal diseases, and lower respiratory infections among middle-SDI countries; and measles and tetanus among...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.