2015
DOI: 10.1016/j.egypro.2015.07.832
|View full text |Cite
|
Sign up to set email alerts
|

River Flow Model Using Artificial Neural Networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

3
41
0
5

Year Published

2017
2017
2024
2024

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 101 publications
(55 citation statements)
references
References 8 publications
3
41
0
5
Order By: Relevance
“…This dataset included three-dimensional radar data of typhoon events and rain gauges from 1990 to 2004, including various typhoons. The results indicated that the ANN performed better.Aichouri, Hani, Bougherira, Djabri, Chaffai, and Lallahem[167] implemented an MLP model for flood prediction, and compared the results with the traditional MLR model. The rainfall-runoff daily data from 1986 to 2003 were used for model building.…”
mentioning
confidence: 99%
“…This dataset included three-dimensional radar data of typhoon events and rain gauges from 1990 to 2004, including various typhoons. The results indicated that the ANN performed better.Aichouri, Hani, Bougherira, Djabri, Chaffai, and Lallahem[167] implemented an MLP model for flood prediction, and compared the results with the traditional MLR model. The rainfall-runoff daily data from 1986 to 2003 were used for model building.…”
mentioning
confidence: 99%
“…As RNAs desenvolvidas para as seções de monitoramento de vazão da bacia do rio Piracicaba apresentaram desempenho adequado e semelhante aos obtidos por Aichouri et al (2015), Elsafi (2014), Mehr et al (2015), Okkan et al (2012), Setiono (2015), Tayyab et al (2016) e Tongal et al (2013), quando da utilização de RNAs com o mesmo objetivo, em bacias hidrográficas de diferentes países.…”
Section: Estação Carrapato (56640000)unclassified
“…Entre os modelos empíricos, as Redes Neurais Artificiais (RNAs) apresentam resultados promissores para a estimativa das vazões de cursos de água, como demonstrado por Aichouri et al (2015), Elsafi (2014), Meng et al (2015), Oliveira et al (2013), Sattari;Apaydin;Ozturk (2012) e Setiono (2015).…”
Section: Introductionunclassified
“…Il établit des relations entre des variables dites « paramètres d′entrée » et d′autres variables dites « paramètres de sortie ». Il se caractérise par sa topologie et son fonctionnement (Aichouri et al, 2015 ;Yao, 2011 ;Zhang et al, 2003). La capacité du PMC à modéliser n′importe quel phénomène complexe tel que les problèmes environnementaux n′est plus à démontrer (Shouliang et al, 2013 ;Ma et al, 2014).…”
Section: Introductionunclassified