aquaporin 2 (aQP2), aQP5 and aQP8 participate in adenomyosis (AM). Ηowever, the roles of these three molecules in AM have not been fully elucidated. In the present study, Institute of Cancer Research female mice were used to establish a model of AM. Subsequently, the endometrial tissues of the mice were observed by hematoxylin-eosin staining, and AM severity, uterus diameter, uterus index, ovary index and numbers of nodules on the uterine surface were evaluated and counted. In addition, eutopic and ectopic endometrial stromal cells (ESCs) were isolated from eutopic and ectopic endometrial samples derived from patients with AM and were then identified by immunofluorescence. The viability, and migratory and invasive ability of ESCs transfected with small interfering RNA targeting AQP5 (siAQP5) were determined by Cell Counting Κit-8, scratch wound-healing and Transwell assays, respectively. Reverse transcription-quantitative polymerase chain reaction was performed to determine the mRNA expression levels of AQP5, epithelial-mesenchymal transition (EMT)-related genes (E-and N-cadherin), matrix metalloproteinase (MMP)-2 and-9. Protein expression levels of AQP2, AQP5, AQP8, E-, N-cadherin, MMP-2 and-9 were detected by western blotting. AM severity and uterus index were higher, and there were a greater number of nodules on the uterine surface in the AM group compared with the sham group. AQP2, AQP5 and AQP8 proteins were highly expressed in eutopic and ectopic endometrium of the AM group, and AQP5 was more highly expressed than AQP2 or AQP8. In addition, the data showed that Vimentin was positively expressed in ESCs, and that siAQP5 suppressed the mRNA expression levels of AQP5, cell viability, migration, invasion, EMT and MMP-2 and-9 expression in ESCs. In conclusion, AQP2, AQP5 and AQP8 were highly expressed in eutopic and ectopic endometrium. Notably, AQP5 silencing may suppress AM by inhibiting viability, migration, invasion, EMT, and MMP-2 and-9 expression in ESCs.