Rpa34 and Rpa49 are nonessential subunits of RNA polymerase I, conserved in species from Saccharomyces cerevisiae and Schizosaccharomyces pombe to humans. Rpa34 bound an N-terminal region of Rpa49 in a two-hybrid assay and was lost from RNA polymerase in an rpa49 mutant lacking this Rpa34-binding domain, whereas rpa34⌬ weakened the binding of Rpa49 to RNA polymerase. rpa34⌬ mutants were caffeine sensitive, and the rpa34⌬ mutation was lethal in a top1⌬ mutant and in rpa14⌬, rpa135(L656P), and rpa135(D395N) RNA polymerase mutants. These defects were shared by rpa49⌬ mutants, were suppressed by the overexpression of Rpa49, and thus, were presumably mediated by Rpa49 itself. rpa49 mutants lacking the Rpa34-binding domain behaved essentially like rpa34⌬ mutants, but strains carrying rpa49⌬ and rpa49-338::HIS3 (encoding a form of Rpa49 lacking the conserved C terminus) had reduced polymerase occupancy at 30°C, failed to grow at 25°C, and were sensitive to 6-azauracil and mycophenolate. Mycophenolate almost fully dissociated the mutant polymerase from its ribosomal DNA (rDNA) template. The rpa49⌬ and rpa49-338::HIS3 mutations had a dual effect on the transcription initiation factor Rrn3 (TIF-IA). They partially impaired its recruitment to the rDNA promoter, an effect that was bypassed by an N-terminal deletion of the Rpa43 subunit encoded by rpa43-35,326, and they strongly reduced the release of the Rrn3 initiation factor during elongation. These data suggest a dual role of the Rpa49-Rpa34 dimer during the recruitment of Rrn3 and its subsequent dissociation from the elongating polymerase.Fast-growing Saccharomyces cerevisiae and Schizosaccharomyces pombe cells mobilize some 70% of their transcriptional capacity to produce the 6.8-kb precursor of the 18S, 5.8S, and 25S rRNAs by transcribing the highly repeated ribosomal DNA (rDNA) locus (44, 50). Genetic studies (43) have established that this is the only role or, at least, the only essential role of yeast RNA polymerase I (Pol I). rDNA transcription starts with the binding of Pol I to its specificity factor Rrn3 (7, 39-41, 48, 57). The Rrn3-Pol I dimer is then directed to a preinitiation complex residing at the rDNA promoter region. This complex combines the TATA box-binding protein (also operating in the Pol II and Pol III systems) with the core and upstream activation factors that are specific to the Pol I system (31, 32). In mammals, Pol I first binds transcription initiation factor IA, akin to Rrn3 and functionally interchangeable with that protein in vivo (7,40,41). The Pol I-transcription initiation factor IA dimer is then targeted to the rDNA promoter by interacting with SL1, a factor made of the TATA box-binding protein associated with four protein subunits, TAF I 95, TAF I 68, TAF I 48, and TAF I 41 (11,22,23,40,59); TAF I 68 is distantly related to the yeast core factor at the level of the core factor's Rrn7/TAF I 68 subunit (9). Pol I is also associated with the upstream binding factor (UBF; mammals) and Hmo1 (yeast) HMG box proteins, which stimulate rDNA t...