2019
DOI: 10.1038/s41597-019-0160-0
|View full text |Cite
|
Sign up to set email alerts
|

RNA-Seq analysis and de novo transcriptome assembly of Cry toxin susceptible and tolerant Achaea janata larvae

Abstract: Larvae of most lepidopteran insect species are known to be voracious feeders and important agricultural pests throughout the world. Achaea janata larvae cause serious damage to Ricinus communis (Castor) in India resulting in significant economic losses. Microbial insecticides based on crystalline (Cry) toxins of Bacillus thuringiensis (Bt) have been effective against the pest. Excessive and indiscriminate use of Bt - ba… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 13 publications
0
2
0
Order By: Relevance
“…Second, it is also urgent to thoroughly investigate the insect resistance mechanisms, especially on the applications of various high-throughput sequencing technologies and multiomics techniques (e.g., transcriptomic, proteomics, metabonomics, and epigenomics), to enrich the database of insecticidal proteins or rapidly screen the vital resistance genes ( Dhania et al, 2019 ). By artificially selecting new types of resistant insects in the laboratory, one can foresee farther the possible resistant pathways of insects; in the same token, scientists can also use control strategies for insect resistance issue purposefully, such as the use of genetic engineering, synthetic biology, and other technologies ( Vílchez, 2020 ) to carry out a directed evolution of Cry toxins by constructing various Cry mutants for enhancing its virulence, or expanding its insecticidal spectrum; or, for targeting insects, by using CRISPR/Cas9-based gene manipulation technology to restore resistant mutants back to the wild type ( Esvelt et al, 2014 ), as well as using the mating and reproduction characteristics of insects to reduce the number of resistant populations.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Second, it is also urgent to thoroughly investigate the insect resistance mechanisms, especially on the applications of various high-throughput sequencing technologies and multiomics techniques (e.g., transcriptomic, proteomics, metabonomics, and epigenomics), to enrich the database of insecticidal proteins or rapidly screen the vital resistance genes ( Dhania et al, 2019 ). By artificially selecting new types of resistant insects in the laboratory, one can foresee farther the possible resistant pathways of insects; in the same token, scientists can also use control strategies for insect resistance issue purposefully, such as the use of genetic engineering, synthetic biology, and other technologies ( Vílchez, 2020 ) to carry out a directed evolution of Cry toxins by constructing various Cry mutants for enhancing its virulence, or expanding its insecticidal spectrum; or, for targeting insects, by using CRISPR/Cas9-based gene manipulation technology to restore resistant mutants back to the wild type ( Esvelt et al, 2014 ), as well as using the mating and reproduction characteristics of insects to reduce the number of resistant populations.…”
Section: Discussionmentioning
confidence: 99%
“…Second, it is also urgent to thoroughly investigate the insect resistance mechanisms, especially on the applications of various high-throughput sequencing technologies and multiomics techniques (e.g., transcriptomic, proteomics, metabonomics, and epigenomics), to enrich the database of insecticidal proteins or rapidly screen the vital resistance genes (Dhania et al, 2019).…”
Section: Discussionmentioning
confidence: 99%