The lack of homogeneity in field application of Bacillus thuringiensis formulation often results in ingestion of sub-lethal doses of the biopesticide by a fraction of pest population and there by promotes the toxin tolerance and resistance in long term. Gut regeneration seems to be one of the possible mechanism by which this is accomplished. However, the existing information is primarily derived from in vitro studies using mid-gut cell cultures. Present study illustrates cellular and molecular changes in mid-gut epithelium of a Bt-susceptible polyphagous insect pest castor semilooper, Achaea janata in response to a Cry toxin formulation. The present report showed that prolonged exposure to sub-lethal doses of Cry toxin formulation has deleterious effect on larval growth and development. Histological analysis of mid-gut tissue exhibits epithelial cell degeneration, which is due to necrotic form of cell death followed by regeneration through enhanced proliferation of mid-gut stem cells. Cell death is demonstrated by confocal microscopy, flow-cytometry, and DNA fragmentation analysis. Cell proliferation in control vs. toxin-exposed larvae is evaluated by bromodeoxyuridine (BrdU) labeling and toluidine blue staining. Intriguingly, in situ mRNA analysis detected the presence of arylphorin transcripts in larval mid-gut epithelial cells. Quantitative PCR analysis further demonstrates altered expression of arylphorin gene in toxin-exposed larvae when compared with the control. The coincidence of enhanced mid-gut cell proliferation coincides with the elevated arylphorin expression upon Cry intoxication suggests that it might play a role in the regeneration of mid-gut epithelial cells.
Larvae of most lepidopteran insect species are known to be voracious feeders and important agricultural pests throughout the world.
Achaea janata
larvae cause serious damage to
Ricinus communis
(Castor) in India resulting in significant economic losses. Microbial insecticides based on crystalline (Cry) toxins of
Bacillus thuringiensis
(Bt) have been effective against the pest. Excessive and indiscriminate use of Bt
-
based biopesticides could be counter-productive and allow susceptible larvae to eventually develop resistance. Further, lack of adequate genome and transcriptome information for the pest limit our ability to determine the molecular mechanisms of altered physiological responses in Bt-exposed susceptible and tolerant insect strains. In order to facilitate biological, biochemical and molecular research of the pest species that would enable more efficient biocontrol, we report the midgut
de novo
transcriptome assembly and clustering of susceptible Cry toxin-exposed and Cry toxin tolerant
Achaea janata
larvae with appropriate age-matched and starvation controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.