BackgroundProstate cancer (PCa) is one of the most commonly diagnosed cancers. The functions of PNO1 in yeasts were involved in regulating ribosome and proteasome biogenesis. Human PNO1 is crucial to the site 3 cleavage at the 3ʹ-end of 18S pre-rRNA. Previous studies indicated that PNO1 may be related to the progression of cancers. However, the functions of PNO1 in PCa remained unclear. MethodsThe present study evaluated the expression levels of PNO1 in PCa by using GSE45016, GSE55945 and GSE17951 datasets. Then, in vivo and in vitro assays were conducted to detect the biological functions of PNO1 in PCa. Microarray and bioinformatic analysis were carried out to detect the downstream targets and pathways regulated by PNO1.ResultsThe present study for the first time demonstrated PNO1 was up-regulated in PCa samples compared to normal tissues. ShRNA mediated knockdown of PNO1 significantly suppressed PCa proliferation and clone formation, however, induced PCa apoptosis. Microarray analysis and bioinformatics analysis revealed PNO1 was involved in regulating multiple cancer related biological processes, such as regulation of DNA repair, single organismal cell-cell adhesion, translational initiation, RNA splicing, transcription, and positive regulation of mRNA catabolic process. OF note, in vivo results showed PNO1 knockdown remarkably reduced the PCa growth rate. ConclusionsDespite more in-depth research is still required, this study showed PNO1 could serve as a potential biomarker for PCa.