Androgen receptor (AR) variants (AR-Vs) expressed in prostate cancer (PCa) lack the AR ligand binding domain (LBD) and function as constitutively active transcription factors. AR-V expression in patient tissues or circulating tumor cells is associated with resistance to AR-targeting endocrine therapies and poor outcomes. Here, we investigated the mechanisms governing chromatin binding of AR-Vs with the goal of identifying therapeutic vulnerabilities. By chromatin immunoprecipitation and sequencing (ChIP-seq) and complementary biochemical experiments, we show that AR-Vs display a binding preference for the same canonical high-affinity androgen response elements (AREs) that are preferentially engaged by AR, albeit with lower affinity. Dimerization was an absolute requirement for constitutive AR-V DNA binding and transcriptional activation. Treatment with the bromodomain and extraterminal (BET) inhibitor JQ1 resulted in inhibition of AR-V chromatin binding and impaired AR-V driven PCa cell growth in vitro and in vivo. Importantly, this was associated with a novel JQ1 action of down-regulating AR-V transcript and protein expression. Overall, this study demonstrates that AR-Vs broadly restore AR chromatin binding events that are otherwise suppressed during endocrine therapy, and provides pre-clinical rationale for BET inhibition as a strategy for inhibiting expression and chromatin binding of AR-Vs in PCa.
Metabolism alterations are hallmarks of cancer, but the involvement of lipid metabolism in disease progression is unclear. We investigated the role of lipid metabolism in prostate cancer using tissue from patients with prostate cancer and patient-derived xenograft mouse models. We showed that fatty acid uptake was increased in human prostate cancer and that these fatty acids were directed toward biomass production. These changes were mediated, at least partly, by the fatty acid transporter CD36, which was associated with aggressive disease. Deleting Cd36 in the prostate of cancer-susceptible Pten−/− mice reduced fatty acid uptake and the abundance of oncogenic signaling lipids and slowed cancer progression. Moreover, CD36 antibody therapy reduced cancer severity in patient-derived xenografts. We further demonstrated cross-talk between fatty acid uptake and de novo lipogenesis and found that dual targeting of these pathways more potently inhibited proliferation of human cancer-derived organoids compared to the single treatments. These findings identify a critical role for CD36-mediated fatty acid uptake in prostate cancer and suggest that targeting fatty acid uptake might be an effective strategy for treating prostate cancer.
Until recently, it was generally assumed that essentially all regulation of transcription takes place via regions adjacent to the coding region of a gene--namely promoters and enhancers--and that, after recruitment to the promoter, the polymerase simply behaves like a machine, quickly "reading the gene." However, over the past decade a revolution in this thinking has occurred, culminating in the idea that transcript elongation is extremely complex and highly regulated and, moreover, that this process significantly affects both the organization and integrity of the genome. This review addresses basic aspects of transcript elongation by RNA polymerase II (RNAPII) and how it relates to other DNA-related processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.