The form of RNA polymerase II (RNAPII) engaged in transcriptional elongation was isolated. Elongating RNAPII was associated with a novel multisubunit complex, termed elongator, whose stable interaction was dependent on a hyperphosphorylated state of the RNAPII carboxy-terminal domain (CTD). A free form of elongator was also isolated, demonstrating the discrete nature of the complex, and free elongator could bind directly to RNAPII. The gene encoding the largest subunit of elongator, ELP1, was cloned. Phenotypes of yeast elp1 delta cells demonstrated an involvement of elongator in transcriptional elongation as well as activation in vivo. Our data indicate that the transition from transcriptional initiation to elongation involves an exchange of the multiprotein mediator complex for elongator in a reaction coupled to CTD hyperphosphorylation.
The elongator complex is a major component of the RNA polymerase II (RNAPII) holoenzyme responsible for transcriptional elongation in yeast. Here we identify Elp3, the 60-kilodalton subunit of elongator/RNAPII holoenzyme, as a highly conserved histone acetyltransferase (HAT) capable of acetylating core histones in vitro. In vivo, ELP3 gene deletion confers typical elp phenotypes such as slow growth adaptation, slow gene activation, and temperature sensitivity. These results suggest a role for a novel, tightly RNAPII-associated HAT in transcription of DNA packaged in chromatin.
Mutations in IKBKAP, encoding a subunit of Elongator, cause familial dysautonomia (FD), a severe neurodevelopmental disease with complex clinical characteristics. Elongator was previously linked not only with transcriptional elongation and histone acetylation but also with other cellular processes. Here, we used RNA interference (RNAi) and fibroblasts from FD patients to identify Elongator target genes and study the role of Elongator in transcription. Strikingly, whereas Elongator is recruited to both target and nontarget genes, only target genes display histone H3 hypoacetylation and progressively lower RNAPII density through the coding region in FD cells. Interestingly, several target genes encode proteins implicated in cell motility. Indeed, characterization of IKAP/hELP1 RNAi cells, FD fibroblasts, and neuronal cell-derived cells uncovered defects in this cellular function upon Elongator depletion. These results indicate that defects in Elongator function affect transcriptional elongation of several genes and that the ensuing cell motility deficiencies may underlie the neuropathology of FD patients.
Eukaryotic cells use multiple, highly conserved mechanisms to contend with ultraviolet-light-induced DNA damage. One important response mechanism is transcription-coupled repair (TCR), during which DNA lesions in the transcribed strand of an active gene are repaired much faster than in the genome overall. In mammalian cells, defective TCR gives rise to the severe human disorder Cockayne's syndrome (CS). The best-studied CS gene, CSB, codes for a Swi/Snf-like DNA-dependent ATPase, whose yeast homologue is called Rad26 (ref. 4). Here we identify a yeast protein, termed Def1, which forms a complex with Rad26 in chromatin. The phenotypes of cells lacking DEF1 are consistent with a role for this factor in the DNA damage response, but Def1 is not required for TCR. Rather, def1 cells are compromised for transcript elongation, and are unable to degrade RNA polymerase II (RNAPII) in response to DNA damage. Our data suggest that RNAPII stalled at a DNA lesion triggers a coordinated rescue mechanism that requires the Rad26-Def1 complex, and that Def1 enables ubiquitination and proteolysis of RNAPII when the lesion cannot be rapidly removed by Rad26-promoted DNA repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.