In recent years, the elderly population in Japan has been increasing. Expectations for the utilization of welfare equipment are also increasing. Electric wheelchairs are one of equipment and are widely used as a convenient means of transportation. On the other hand, accidents have also occurred, and dangers have been pointed out when driving the electric wheelchair. Therefore, we believe that the development of an autonomous mobile electric wheelchair can improve the causes of accidents. In addition, it can be expected to reduce accidents and improve the convenience of electric wheelchairs. For the development of an autonomous electric wheelchair, environment recognition such as estimation of the current position, recognition of sidewalks and traffic lights, and prediction of movement of objects is indispensable. To solve these problems, we develop an algorithm to recognize the sidewalks, crosswalks, and traffic lights from video images. In recent years, deep learning has been widely applied in the field of image recognition. Therefore, we improve WideSeg, one of the semantic segmentation algorithms that apply CNN (Convolutional Neural Networks), and develop an object recognition method using a new CNN model. In our approach, we perform adding the sidewalk correction and noise removal processing after performing semantic segmentation with the proposed model.