Etsy 1 is a global marketplace where people across the world connect to make, buy, and sell unique goods. Sellers at Etsy can promote their product listings via advertising campaigns similar to traditional sponsored search ads. Click-Through Rate (CTR) prediction is an integral part of online search advertising systems where it is utilized as an input to auctions which determine the final ranking of promoted listings to a particular user for each query. In this paper, we provide a holistic view of Etsy's promoted listings' CTR prediction system and propose an ensemble learning approach which is based on historical or behavioral signals for older listings, as well as content-based features for new listings. We obtain representations from texts and images by utilizing state-of-the-art deep learning techniques and employ multimodal learning to combine these different signals. We compare the system to non-trivial baselines on a large-scale, real world dataset from Etsy, demonstrating the effectiveness of the model and strong correlations between offline experiments and online performance. The paper is also the first technical overview to this kind of product in an e-commerce context. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
CCS CONCEPTS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.