In recent years, research and development of autonomous driving technology have gained much interest. Many autonomous driving frameworks have been developed in the past. However, building a safely operating fully functional autonomous driving framework is still a challenge. Several accidents have been occurred with autonomous vehicles, including Tesla and Volvo XC90, resulting in serious personal injuries and death. One of the major reasons is the increase in urbanization and mobility demands. The autonomous vehicle is expected to increase road safety while reducing road accidents that occur due to human errors. The accurate sensing of the environment and safe driving under various scenarios must be ensured to achieve the highest level of autonomy. This research presents Clothoid, a unified framework for fully autonomous vehicles, that integrates the modules of HD mapping, localization, environmental perception, path planning, and control while considering the safety, comfort, and scalability in the real traffic environment. The proposed framework enables obstacle avoidance, pedestrian safety, object detection, road blockage avoidance, path planning for single-lane and multi-lane routes, and safe driving of vehicles throughout the journey. The performance of each module has been validated in K-City under multiple scenarios where Clothoid has been driven safely from the starting point to the goal point. The vehicle was one of the top five to successfully finish the autonomous vehicle challenge (AVC) in the Hyundai AVC.