Chimeric antigen receptor (CAR) T cell therapy has emerged as a new and breakthrough cancer immunotherapy. Although CAR-T cell therapy has made significant progress clinically in patients with refractory or drug-resistant hematological malignancies, there are numerous challenges in its application to solid tumor therapy, including antigen escape, severe toxic reactions, abnormal vascularization, tumor hypoxia, insufficient infiltration of CAR-T cells and immunosuppression. As a conventional mode of anti-tumor therapy, radiotherapy has shown promising effects in combination with CAR-T cell therapy by enhancing the specific immunity of endogenous target antigens, which promoted the infiltration and expansion of CAR-T cells and improved the hypoxic tumor microenvironment. This review focuses on the obstacles to the application of CAR-T technology in solid tumor therapy, the potential opportunities and challenges of combined radiotherapy and CAR-T cell therapy, and the review of recent literature to evaluate the best combination for the treatment of solid tumors. Contents 1. Introduction 2. Limitations of CAR-T cell therapy 3. Advantages of radiotherapy 4. Challenges associated with radiotherapy 5. Combination of radiotherapy and CAR-T cell therapy 6. Implementation and feasibility of combined radiotherapy and CAR-T cell therapy 7. Conclusions