2018
DOI: 10.1109/mits.2018.2842040
|View full text |Cite
|
Sign up to set email alerts
|

Road Traffic Conditions Classification Based on Multilevel Filtering of Image Content Using Convolutional Neural Networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
16
0
4

Year Published

2019
2019
2024
2024

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 46 publications
(20 citation statements)
references
References 20 publications
0
16
0
4
Order By: Relevance
“…A deep CNN that collectively counts the number of vehicles on a road segment based solely on video images, without special attention to an individual vehicle as an object to be detected separately, is proposed in [35]. A further CNN approach is proposed in [36] for classification of road traffic conditions based on video surveillance data, to establish measures of congestion of observed traffic. In [37], authors propose a unified online and offline learning framework for traffic sign detection, tracking, and recognition task using a mono-camera mounted on a moving vehicle.…”
Section: B Transportmentioning
confidence: 99%
“…A deep CNN that collectively counts the number of vehicles on a road segment based solely on video images, without special attention to an individual vehicle as an object to be detected separately, is proposed in [35]. A further CNN approach is proposed in [36] for classification of road traffic conditions based on video surveillance data, to establish measures of congestion of observed traffic. In [37], authors propose a unified online and offline learning framework for traffic sign detection, tracking, and recognition task using a mono-camera mounted on a moving vehicle.…”
Section: B Transportmentioning
confidence: 99%
“…Recently, Deep Learning (DL) models have achieved great success to overcome the complex problems of road traffic datasets [4]. Specifically, well-known DL models such as Deep Neural Network (DNN) [5], Recurrent Neural Network (RNN) [6], Convolutional Neural Network (CNN) [7], and Deep Reinforcement Learning (DQN) [8], [9] have been adopted for various applications in ITS as shown in Fig. 1.…”
Section: Introductionmentioning
confidence: 99%
“…A classificação do fluxo de carros consiste em rotular a condição do trânsito de veículos na via, considerando algumas variáveis como o número de carros em um curto espaço de tempo e a velocidade média deles [10]. Em geral, na literatura há trabalhos classificando o trânsito em duas, três ou quatro classes distintas [11] [12] [13].…”
unclassified
“…Com o recente avanço do poder computacional para o processamento e armazenamento de dados, o uso das CNNs melhorou o rendimento em diversos campos de aplicação [21]. Por conseguinte, o emprego dessas técnicas nas abordagens holísticas envolvendo classificação e previsão do trânsito recebeu grande atenção nosúltimos anos [13] Luo et al [19] investigaram um método que não utiliza informações de movimento na cena. Para adquirir uma representação global do tráfego, os autores testaram quatro descritores visuais e dois modelos de CNN treinados no banco de dados ImageNet [23].…”
unclassified
See 1 more Smart Citation