This paper proposes a new concept in which a digital twin derived from a digital product description will automatically perform assembly planning and orchestrate the production resources in a manufacturing cell. Thus the manufacturing cell has generic services with minimal assumptions about what kind of product will be assembled, while the digital product description is designed collaboratively between the designer at an OEM and automated services at potential manufacturers. This has several advantages. Firstly, the resulting versatile manufacturing facility can handle a broad variety of products with minimal or no reconfiguration effort, so it can cost-effectively offer its services to a large number of OEMs. Secondly, a solution is presented to the problem of performing concurrent product design and assembly planning over the organizational boundary. Thirdly, the product design at the OEM is not constrained to the capabilities of specific manufacturing facilities. The concept is presented in general terms in UML and an implementation is provided in a 3D simulation environment using Automation Markup Language for digital product descriptions. Finally, two case studies are presented and applications in a real industrial context are discussed.
The author wrote the manuscript in collaboration with Mr. Miettinen, Mr. Aikala and Mr. Savolainen. The author implemented and tested the proposed method on the Aalto University laboratory process under the guidance of Dr. Karhela and Prof. Vyatkin. Publication IV: "Sliding Mode SISO Control of Model Parameters for Implicit Dynamic Feedback Estimation of Industrial Tracking Simulation Systems" The author wrote the manuscript in collaboration with Mr. Ruusu. Mr. Ruusu developed the conceptual designed of the proposed method and implemented the parameter controller. The author implemented and tested the proposed method on the Aalto University laboratory process under the guidance of Dr. Karhela and Prof. Vyatkin.
Industry 4.0 architecture has been studied in a large number of publications in the fields of Industrial Internet of Things, Cyber Physical Production Systems, Enterprise Architectures, Enterprise Integration and Cloud Manufacturing. A large number of architectures have been proposed, but none of them has been adopted by a large number of research groups. Two major Industry 4.0 reference architectures have been developed by industry-driven initiatives, namely the German Industry 4.0 and the US-led Industrial Internet Consortium. These are the Reference Architecture Model Industry 4.0 and Industrial Internet Reference Architecture, which are being standardized by the International Electrotechnical Commission and the Object Management Group, respectively. The first research goal of this article is to survey the literature on Industry 4.0 architectures in a factory context and assess awareness and compatibility with Reference Architecture Model Industry 4.0 and Industrial Internet Reference Architecture. The second research goal is to adapt a previously proposed advanced manufacturing concept to Reference Architecture Model Industry 4.0. With respect to the first research goal, it was discovered that only a minority of researchers were aware of the said reference architectures and that in general authors offered no discussion about the compatibility of their proposals with any internationally standardized reference architecture for Industry 4.0. With respect to the second research goal, it was discovered that Reference Architecture Model Industry 4.0 was mature with respect to communication and information sharing in the scope of the connected world, that further standardization enabling interoperability of different vendors' technology is still under development and that technology standardization enabling executable business processes between networked enterprises was lacking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.