“…And, what kind of fuzzy controller is the most adequate? The most popular groups of learning methodologies for fuzzy controllers in robotics are evolutionary algorithms (Dahl & Giraud-Carrier, 2004;Gu, Hu, Reynolds, & Tsang, 2003;Hagras, Callaghan, & Collin, 2004;Izumi, Watanabe, & Jin, 1999;Katagami & Yamada, 2000;Mucientes, Moreno, Bugarín, & Barro, 2006;Mucientes, Moreno, Bugarín, & Barro, 2007;Oh & Barlow, 2004;Yamada, 2005), neural networks (Hui, Mahendar, & Pratihar, 2006;Shiah & Young, 2004) and reinforcement learning (Beom & Cho, 1995;Bonarini, 1997;Gu, Hu, & Spacek, 2003;Kalmár, Szepesvári, & Lörincz, 1998;Lin, 2003;Takahashi & Asada, 2003;Thongchai, 2002;Wang, Huber, Papudesi, & Cook, 2003;Zhou, 2002). Also, combinations of them, like neural networks and evolutionary algorithms (Berlanga, Sanchis, Isasi, & Molina, 2000;Chen & Chiang, 2004;Floreano & Mondada, 1998;Lee & Zhang, 2000;Miglino, Lund, & Nolfi, 1995;Nelson, Grant, Barlow, & White, 2003;Tuci, Quinn, & Harvey, 2003), have been successfully applied.…”