SUMMARYA gene expression oscillator called the segmentation clock controls somite segmentation in the vertebrate embryo. In zebrafish, the oscillatory transcriptional repressor genes her1 and her7 are crucial for genesis of the oscillations, which are thought to arise from negative autoregulation of these genes. The period of oscillation is predicted to depend on delays in the negative-feedback loop, including, most importantly, the transcriptional delay -the time taken to make each molecule of her1 or her7 mRNA. her1 and her7 operate in parallel. Loss of both gene functions, or mutation of her1 combined with knockdown of Hes6, which we show to be a binding partner of Her7, disrupts segmentation drastically. However, mutants in which only her1 or her7 is functional show only mild segmentation defects and their oscillations have almost identical periods. This is unexpected because the her1 and her7 genes differ greatly in length. We use transgenic zebrafish to measure the RNA polymerase II elongation rate, for the first time, in the intact embryo. This rate is unexpectedly rapid, at 4.8 kb/minute at 28.5°C, implying that, for both genes, the time taken for transcript elongation is insignificant compared with other sources of delay, explaining why the mutants have similar clock periods. Our computational model shows how loss of her1 or her7 can allow oscillations to continue with unchanged period but with reduced amplitude and impaired synchrony, as manifested in the in situ hybridisation patterns of the single mutants.
RESEARCH ARTICLE Gene length and the somite clockThis formula is derived for the idealised case of a single 'her1/7' autoinhibitory gene or, equivalently, of a pair of genes, her1 and her7, that have the same delays, lifetimes and regulation. Computer modelling shows that if her1 and her7 have somewhat different delays and lifetimes but are co-regulated, oscillations will occur with a period that is a compromise between that for a pure her1 oscillator and that for a pure her7 oscillator. Mutants in which her1 remains intact but her7 is functionally null, or vice versa, have recently become available, and in this paper we use them to test this prediction. Because the her1 and her7 genes are very different in length ( Fig. 2A), we anticipated that they should have different transcriptional delays, leading to different periods of oscillation. To our surprise, we found that the difference of period is actually very small. To resolve this paradox, we measured the elongation rate of RNA polymerase II (RNA Pol II), for the first time in vivo in a vertebrate. The value, as measured in the PSM cells of the zebrafish, is 4.8 kb/minute at 28.5°C. This unexpectedly high rate means that the time taken to transcribe the two genes is so short as to be insignificant in comparison with other sources of delay, such as the time required for splicing. These findings reconcile our theory with the experimental observations and remove an important objection to the proposition that her1 and her7 are pacemakers of the seg...