Power system dynamics are naturally nonlinear. The nonlinearity stems from power flows, generator dynamics, and electromagnetic transients. Characterizing the nonlinearity of the dynamical power system model is useful for designing superior estimation and control methods, providing better situational awareness and system stability. In this paper, we consider the synchronous generator model with a phasor measurement unit (PMU) that is installed at the terminal bus of the generator. The corresponding nonlinear process-measurement model is shown to be locally Lipschitz, i.e., the dynamics are limited in how fast they can evolve in an arbitrary compact region of the statespace. We then investigate different methods to compute Lipschitz constants for this model, which is vital for performing dynamic state estimation (DSE) or state-feedback control using Lyapunov theory. In particular, we compare a derived analytical bound with numerical methods based on low discrepancy sampling algorithms. Applications of the computed bounds to dynamic state estimation are showcased. The paper is concluded with numerical tests.Index Terms-Synchronous generator, dynamic state estimation, phasor measurement units, Lipschitz nonlinearity, Lipschitz-based observer, low discrepancy sequence.