Adversarial training, as one of the few certified defenses against adversarial attacks, can be quite complicated and time-consuming, while the results might not be robust enough. To address the issue of lack of robustness, ensemble methods were proposed, aiming to get the final output by weighting the selected results from repeatedly trained processes. It is proved to be very useful in achieving robust and accurate results, but the computational and memory costs are even higher. Snapshot ensemble, a new ensemble method that combines several local minima in a single training process to make the final prediction, was proposed recently, which reduces the time spent on training multiple networks and the memory to store the results. Based on the snapshot ensemble, we present a new method that is easier to implement: unlike original snapshot ensemble that seeks for local minima, our snapshot ensemble focuses on the last few iterations of a training and stores the sets of parameters from them. Our algorithm is much simpler but the results are no less accurate than the original ones: based on different hyperparameters and datasets, our snapshot ensemble has shown a 5% to 30% increase in accuracy when compared to the traditional adversarial training.