Portfolio optimization is a challenging problem that has attracted considerable attention and effort from researchers. The optimization of stock portfolios is a particularly hard problem since the stock prices are volatile and estimation of their future volatilities and values, in most cases, is very difficult, if not impossible. This work uses three ratios, the Sharpe ratio, the Sortino ratio, and the Calmar ratio, for designing the mean-variance optimized portfolios for six important sectors listed in the National Stock Exchange (NSE) of India. Three portfolios are designed for each sector maximizing the ratios based on the historical prices of the ten most important stocks of each sector from Jan 1. 2017 to Dec 31. 2020. The evaluation of the portfolios is done based on their cumulative returns over the test period from Jan 1, 2021, to Dec 31, 2021. The ratio that yields the maximum cumulative returns for both the training and the test periods for the majority of the sectors is identified. Additionally, the sectors which exhibit the maximum cumulative returns for the same ratio are also identified. The results provide useful insights for the investors in the stock market in making their investment decisions based on the current return and risks associated with the six sectors and their stocks.