The performance of an injection molding machine (IMM) influences the process and the quality of the parts manufactured. Despite increasing data collection capabilities, their machine-specific behavior has not been extensively studied. To close corresponding research gaps, the machine-specific behavior of two hydraulic IMMs of different sizes and one electric IMM were compared with each other as part of the investigations. Both the start-up behavior from the cold state and the behavior of the machine at different operating points were considered. To complement this, the influence of various material properties on the machine-specific behavior was investigated by processing an unreinforced and glass-fiber-reinforced polyamide. The results obtained provide crucial insights into machine-specific behavior, which may, for instance, account for disparities between computer fluid dynamic (CFD) simulations and experimental results. Furthermore, it is expected that the description of the machine-specific behavior can contribute to transfer knowledge when applying transfer learning algorithms. Looking ahead to future research, it is advised to create what is referred to as a “machine fingerprint”, and this proposal is accompanied by some preliminary recommendations for its development.