Automatic classification of aerial images has become one of the topics studied in recent years. Especially for the use of drones in different fields such as agricultural applications, smart city applications, surveillance and security applications, it is necessary to automatically classify the images obtained with the camera during autonomous mission execution. For this purpose, researchers have created new data sets and some computer vision methods have been developed to achieve high accuracy. However, in addition to increasing the accuracy of the developed methods, the computational complexity should also be reduced. Because the methods to be used in devices such as drones where energy consumption is important should have low computational complexity. In this study, firstly, five different state-of-art deep learning models were used to obtain high accuracy values in the classification of aerial images. Among these models, the VGG19 model achieved the highest accuracy with 94.21%. In the second part of the study, the parameters of this model were analyzed and the model was reconstructed. The number of 143.6 million parameters of the VGG19 model was reduced to 34 million. The accuracy of the model obtained by reducing the number of parameters is 93.56% on the same test data. Thus, despite the 66.5% decrease in the parameter ratio, there was only a 0.7% decrease in the accuracy value. When compared to previous studies, the results show improved performance.