2019
DOI: 10.1111/cgf.13689
|View full text |Cite
|
Sign up to set email alerts
|

Robust Reference Frame Extraction from Unsteady 2D Vector Fields with Convolutional Neural Networks

Abstract: Robust feature extraction is an integral part of scientific visualization. In unsteady vector field analysis, researchers recently directed their attention towards the computation of near‐steady reference frames for vortex extraction, which is a numerically challenging endeavor. In this paper, we utilize a convolutional neural network to combine two steps of the visualization pipeline in an end‐to‐end manner: the filtering and the feature extraction. We use neural networks for the extraction of a steady refere… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
20
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
3
2

Relationship

1
8

Authors

Journals

citations
Cited by 39 publications
(20 citation statements)
references
References 42 publications
0
20
0
Order By: Relevance
“…We also refer to their research tasks when categorizing the surveyed papers in the respective tables according to learning type, network architecture, loss function, and evaluation metric. The description [51] TSR-TVD TVCG Han and Wang [50] SSR-TVD TVCG Han et al [55] STNet TVCG Wurster et al [167] arXiv Guo et al [47] SSR-VFD PVIS Jakob et al [76] TVCG Sahoo and Berger [126] IA-VFS EVIS An et al [2] STSRNet CG&A Han and Wang [53] TSR-VFD C&G Xie et al [168] tempoGAN TOG Werhahn et al [162] CGIT Wang et al [156] DeepOrganNet TVCG Lu et al [109] neurcomp CGF Weiss et al [160] fV-SRN arXiv Shi et al [131] GNN-Surrogate TVCG Han and Wang [54] VCNet VI Liu et al [106] JOV Han et al [49] CG&A Gu et al [45] VFR-UFD CG&A Han et al [56] V2V TVCG Gu et al [46] Scalar2Vec PVIS Kim et al [84] Deep Fluids CGF Chu et al [27] TOG Wiewel et al [163] LSP CGF Wiewel et al [164] LSS CGF Berger et al [12] TVCG Hong et al [70] DNN-VolVis PVIS He et al [63] InSituNet TVCG Weiss et al [159] TVCG Weiss et al [161] TVCG Weiss and Navab [158] DeepDVR arXiv He et al [62] CECAV-DNN VI Tkachev et al [143] TVCG Hong et al [71] PVIS Kim and Günther [85] CGF Han et al [57] arXiv Yang et al [169] JOV Shi and Tao [130] TIST Engel and Ropinski …”
Section: Dl4scivis Workmentioning
confidence: 99%
“…We also refer to their research tasks when categorizing the surveyed papers in the respective tables according to learning type, network architecture, loss function, and evaluation metric. The description [51] TSR-TVD TVCG Han and Wang [50] SSR-TVD TVCG Han et al [55] STNet TVCG Wurster et al [167] arXiv Guo et al [47] SSR-VFD PVIS Jakob et al [76] TVCG Sahoo and Berger [126] IA-VFS EVIS An et al [2] STSRNet CG&A Han and Wang [53] TSR-VFD C&G Xie et al [168] tempoGAN TOG Werhahn et al [162] CGIT Wang et al [156] DeepOrganNet TVCG Lu et al [109] neurcomp CGF Weiss et al [160] fV-SRN arXiv Shi et al [131] GNN-Surrogate TVCG Han and Wang [54] VCNet VI Liu et al [106] JOV Han et al [49] CG&A Gu et al [45] VFR-UFD CG&A Han et al [56] V2V TVCG Gu et al [46] Scalar2Vec PVIS Kim et al [84] Deep Fluids CGF Chu et al [27] TOG Wiewel et al [163] LSP CGF Wiewel et al [164] LSS CGF Berger et al [12] TVCG Hong et al [70] DNN-VolVis PVIS He et al [63] InSituNet TVCG Weiss et al [159] TVCG Weiss et al [161] TVCG Weiss and Navab [158] DeepDVR arXiv He et al [62] CECAV-DNN VI Tkachev et al [143] TVCG Hong et al [71] PVIS Kim and Günther [85] CGF Han et al [57] arXiv Yang et al [169] JOV Shi and Tao [130] TIST Engel and Ropinski …”
Section: Dl4scivis Workmentioning
confidence: 99%
“…For example, it has been widely used to detect flow field features such as eddies and vortices ( [5,12,14,37,39,58,61,63]). [33] utilized the convolutional neural networks (CNNs) to extract a robust frame of reference for unsteady two-dimensional (2D) vector fields. [28] used the long short-term memory (LSTM) to improve data access patterns for improved computational performance during distributed memory particle advection.…”
Section: Flow Visualization Using Machine Learningmentioning
confidence: 99%
“…Hence, we assess the difference with an L 1 norm that is combined with a gradient loss to not only penalize differences in the values but also in the derivatives, which aids in the reconstruction of higherfrequency details. We refer to Kim and Günther (2019) and for a discussion of the norms and weights of the gradient loss.…”
Section: Training Procedures and Lossmentioning
confidence: 99%