Scheduling is essentially a decision-making process that enables resource sharing among a number of activities by determining their execution order on the set of available resources. The emergence of distributed systems brought new challenges on scheduling in computer systems, including clusters, grids, and more recently clouds. On the other hand, the plethora of research makes it hard for both newcomers researchers to understand the relationship among different scheduling problems and strategies proposed in the literature, which hampers the identification of new and relevant research avenues. In this paper we introduce a classification of the scheduling problem in distributed systems by presenting a taxonomy that incorporates recent developments, especially those in cloud computing. We review the scheduling literature to corroborate the taxonomy and analyze the interest in different branches of the proposed taxonomy. Finally, we identify relevant future directions in scheduling for distributed systems.1. α = P m : Identical machines in parallel. Execution environment is composed of m identical machines in parallel, as usually found in a cluster computing infrastructure.