In this paper, dynamic behavior analysis has been discussed for a class of switched complex-valued neural networks with interval parameter uncertainties and impulse disturbance. Sufficient conditions for guaranteeing the existence, uniqueness, and global robust exponential stability of the equilibrium point have been obtained by using the homomorphism mapping theorem, the scalar Lyapunov function method, the average dwell time method, and M-matrix theory. Since there is no result concerning the stability problem of switched neural networks defined in complex number domain, the stability results we describe in this paper generalize the existing ones. The effectiveness of the proposed results is illustrated by a numerical example.