2007
DOI: 10.1016/j.ins.2006.07.035
|View full text |Cite
|
Sign up to set email alerts
|

Robust synthesis of a PID controller by uncertain multimodel approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
12
0

Year Published

2008
2008
2018
2018

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 25 publications
(12 citation statements)
references
References 20 publications
0
12
0
Order By: Relevance
“…The compensation of changes of the system parameters or system nonlinearities can be achieved by gain scheduling controllers [29], [30] or their advanced forms such as linear parameter varying (LPV) control methods [31] and multimodel approach [32], then by selftuning controllers [29] or by model reference adaptive control (MRAC) [29], [30], [33], [34]. System nonlinearities can be compensated for by model predictive control (MPC) as well [35], [36].…”
Section: Adaptive System Inner Control Loop Designmentioning
confidence: 99%
“…The compensation of changes of the system parameters or system nonlinearities can be achieved by gain scheduling controllers [29], [30] or their advanced forms such as linear parameter varying (LPV) control methods [31] and multimodel approach [32], then by selftuning controllers [29] or by model reference adaptive control (MRAC) [29], [30], [33], [34]. System nonlinearities can be compensated for by model predictive control (MPC) as well [35], [36].…”
Section: Adaptive System Inner Control Loop Designmentioning
confidence: 99%
“…Many robust controller design methods for multimodel systems are available in the literature. Toscano (2007) proposes a method to design PID and multi-PID to control nonlinear systems using multimodel in the state space representation. The time delay is approximated by a high order transfer function and the controller is tuned using an iterative algorithm with no convergence result.…”
Section: Introductionmentioning
confidence: 99%
“…9 And because nonlinearity is always incorporated in the original control problem, for it usually involves both the physical output and the physical input, separating the nonlinearity from the control problem therefore may lead to a decreased performance. 10 The multilinear model control approach has attracted much attention and has been studied extensively in the past years [11][12][13][14][15][16][17][18] for its potential ability to control chemical processes with highly nonlinear characteristics as a result of wide operating ranges and large set-point changes. The key concept is to represent the nonlinear system as a combination of linear systems to which classical controller design techniques can be easily applied.…”
Section: Introductionmentioning
confidence: 99%