Various method was developed for the acquisition of the three-dimensional surface of an object. One of the more popular methods used is the structured light profilometry method. It can capture a high-resolution three-dimensional object in real-time. Not only that, but this method is also non-invasive, which is very suitable for the measurement of fragile samples. This paper discusses the accuracy and stability of a structured light profilometry method that is used to obtain a 3D measurement. The experiment is done by using a calibrated camera and projector. A light pattern is then projected onto the sample and captured by the camera. The accuracy of the system is investigated by capturing a flat plate with an increment of 50 µm from 0 µm to 1000 µm. The result has shown a maximum percentage error of this system is 15.76% which is 9.3511 µm, and the minimum percentage error is 0.15% which is 0.7339 µm. For the stability test, the plate was captured thirty times at the same location, and the data obtained shows the consistency of the system has a minimum and maximum standard deviation of 2.4991 µm and 6.8886 µm, which is within 7 µm. The test on the feeler gauge shows a maximum percentage error of 2.12% which is 2.1671 µm.