Topology optimization is a systematic, free-form approach to the design of structures. It simultaneously optimizes material quantities and system connectivity, enabling the discovery of new, high-performance structural concepts. While powerful, this design freedom has a tendency to produce solutions that are unrealizable or impractical from a structural engineering perspective. Examples include overly complex topologies that are expensive to construct and ultra-slender subsystems that may be overly susceptible to imperfections. This paper summarizes recent tools developed by the authors capable of mitigating these shortcomings through consideration of (1) constructability, (2) nonlinear mechanics, and (3) uncertainties.