Cable-driven parallel robots can provide interesting advantages over conventional robots with rigid links; in particular, robots with a cable-suspended architecture can have very large workspaces. Recent research has shown that dynamic trajectories allow the robot to further increase its workspace by taking advantage of inertial effects. In our work, we consider a three-degrees-of-freedom parallel robot suspended by three cables, with a point-mass end-effector. This model was considered in previous works to analyze the conditions for dynamical feasibility of a trajectory. Here, we enhance the robot’s capabilities by using it as a sling, that is, by throwing a mass at a suitable time. The mass is carried at the end-effector by a gripper, which releases the mass so that it can reach a given target point. Mathematical models are presented that provide guidelines for planning the trajectory. Moreover, results are shown from simulations that include the effect of cable elasticity. Finally, suggestions are offered regarding how such a trajectory can be optimized.