Numerical modeling of many optical-fiber-based devices' operation requires an exact knowledge of fiber's parameters like core diameter and dopant, usually GeO2, concentration. While diameters are typically specified in the fiber's data sheet, material composition, including dopant in the core, is rarely available. We present a procedure utilizing a reverse engineering approach to find GeO2 concentration in single-mode step-index optical fiber. Our method consists of several stages. First, we measured the numerical aperture NA for several commercially available fibers employing a onedimensional far-field scan. The far-filed mode intensity was acquired by a Ge detector placed on a rotation stage with a stepper motor for fiber end-face positioned on the motor's axis of rotation. We calculated NA for the angular detector position when the light intensity reached 13.5%, 5%, and 1% of its maximum value. Then, taking the corresponding values of core and cladding diameters and using the Sellmeier formula for pure (cladding) and GeO2 doped (core) silica glass, we found the concentration of GeO2 numerically matching calculated NA to the experimental data. We found that dopant concentration equals 9.0, 18.0, 34.0, 34.5, and 39.8 mol% for the fibers, respectively, 980-HP, UHNA1, UHNA3, UHNA4 and UHNA7 produced by Coherent. To verify the correctness of our method, we performed this procedure for several fibers with a known level of GeO2 concentration in the core fabricated by the Laboratory of Optical Fiber Technology, Maria Curie-Sklodowska University. The results of this simulation coincide with expectations with great accuracy.