2006 1st International Symposium on Systems and Control in Aerospace and Astronautics
DOI: 10.1109/isscaa.2006.1627642
|View full text |Cite
|
Sign up to set email alerts
|

Robust Vibration Control of Uncertain Flexible Structures with Poles Placement

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 10 publications
0
2
0
1
Order By: Relevance
“…En estas circunstancias se presenta la necesidad de diseñar un controlador robusto que considere las incertidumbres del sistema. Existe gran cantidad de técnicas para el modelamiento de un sistema con incertidumbre en los parámetros en la teoría de control robusto [13]. Para el caso del convertidor elevador boost, la perturbación ∆ ( ) se considerará como incertidumbre no estructurada.…”
Section: Incertidumbre Del Sistemaunclassified
“…En estas circunstancias se presenta la necesidad de diseñar un controlador robusto que considere las incertidumbres del sistema. Existe gran cantidad de técnicas para el modelamiento de un sistema con incertidumbre en los parámetros en la teoría de control robusto [13]. Para el caso del convertidor elevador boost, la perturbación ∆ ( ) se considerará como incertidumbre no estructurada.…”
Section: Incertidumbre Del Sistemaunclassified
“…Their numerical simulations proved that the tip deflection of the arm can be effectively reduced by the proposed self-sensing actuator. One of the potential methods to deal with modeling and parameter changes is robust controller design, including robust pole-placement [12], robust H ∞ [13], robust LQ [14], and robust min-max LQ [15].…”
Section: Introductionmentioning
confidence: 99%
“…Within this predefined bounded set, the controller remains stable and fulfills certain tradeoff performance criteria; nevertheless, the best performance is usually achieved only with the nominal model. Robust versions of numerous well-known control methods have been considered for the control of vibrating mechanical structures, including robust pole-placement [10], robust H ∞ [11], robust LQ [12], and robust min-max LQ [1]. Nonetheless, a real adaptive vibration control system offering a degree of self-reliance requires advanced control looking beyond the boundaries of mere robustness [9].…”
Section: Introductionmentioning
confidence: 99%