transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.
The dynamic properties of vibration control systems pose unique requirements and challenges on the implementation of model predictive control (MPC) algorithms with stability and feasibility guarantees. This article presents a comprehensive experimental comparison of computation timing and damping performance for various MPC methods; analyzing their offline and online properties in active vibration control and their impact on practical implementability. Optimal and sub-optimal MPC algorithms providing guaranteed stability and constraint feasibility have been applied to the real-time active vibration attenuation of a lightly damped mechanical test structure. Based on the experiments presented in this paper, the standard and sequential quadratic programming-based, optimal and sub-optimal minimum time multi-parametric programming-based and the sub-optimal Newton–Raphson’s algorithm-based MPC methods demonstrate closely comparable vibration attenuation performance. The offline and online timing analysis indicates that the underlying difference between the investigated MPC algorithms lies mainly in practical implementability difficulties caused by inherent algorithm efficiency, rendering certain variants of MPC more suitable for vibration control than others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.