In this paper we present a unified comparison of the performance of four detection techniques for centralized data-fusion cooperative spectrum sensing in cognitive radio networks under impulsive noise, namely, the eigenvalue-based generalized likelihood ratio test (GLRT), the maximum-minimum eigenvalue detection (MMED), the maximum eigenvalue detection (MED), and the energy detection (ED). We consider two system models: an implementation-oriented model that includes the most relevant signal processing tasks realized by a real cognitive radio receiver, and the theoretical model conventionally adopted in the literature. We show that under the implementation-oriented model, GLRT and MMED are quite robust under impulsive noise, whereas the performance of MED and ED is drastically degraded. We also show that performance under the conventional model can be too pessimistic if impulsive noise is present, whereas it can be too optimistic in the absence of this impairment. We also discuss the fact that impulsive noise is not such a severe problem when we take into account the more realistic implementation-oriented model