“…For example, elevated levels of phosphorylated myosin were detected in the ischaemic brain vessel wall [13, 46], indicative of universal vascular ROCK activity in these conditions; further, it is now well-accepted that the RhoA/ROCK pathway inversely regulates endothelial nitric oxide synthase (eNOS) and that the beneficial activity of ROCK inhibitors is largely mediated via upregulation and activation of eNOS [47], also shown in the brain during stroke [16, 41]; finally, in isolated BECs nonselective ROCK inhibition attenuated OGD-invoked oxidative stress [14], tight junction degradation [48, 49], barrier dysfunction [48–50] and rt-PA-induced cell death and MMP-9 upregulation [22], indicative of substantial participation of ROCKs in the ischaemic BEC response. A more specific ROCK-2 expression and/or function has been documented in endothelial cells of the umbilical cord [31, 36], lung [31, 33, 40], pancreas [32, 34] and recently in brain arterioles [45], where it plays distinct roles in proinflammatory cell adhesion molecule expression [36], maintenance and regulation of vascular permeability [31] and vascular tone [45], temporal MLC phosphorylation [33] and angiogenesis [32, 34]. Taken together, it could be speculated that ROCK-2 is most likely involved in regulation of the cerebral microcirculation which forms the BBB, particularly during pathological processes.…”