Content-based image retrieval involves the extraction of global feature images for their retrieval performance in large image databases. Extraction of global features image cause problem of the semantic gap between the high-level meaning and low-level visual features images. In this study RBIR, Region of Interest Based (ROI) Image Retrieval Using Incremental Frame of Color Image was proposed. It combines several methods, including filtering process, image partitioning using clustering and incremental frame formation, complementation law of theory set to generate ROI, NROI, or ER of the region. The concept of weighting as well as a significant query is also incorporated as a query strategy. Extensive experiments were also conducted on the Wang database and the color model selected was the CIE lab. Experimental results show the proposed method is efficient in image retrieval. The performance of the proposed method shows a better average IPR value of 3.51% compared to RGB and 22.92% with the HSV color model. Meanwhile, it also performs better by 36%, 5%, and 24% compared to methods CH (8,2,2), CH (8,3,3), and CH (16,4,4).